4.5 The nucleus is the cell’s genetic control center

- The nucleus
 - contains most of the cell’s DNA and
 - controls the cell’s activities by directing protein synthesis by making messenger RNA (mRNA).
- DNA is associated with many proteins in structures called chromosomes.

4.5 The nuclear envelope

- is a double membrane and
- has pores that allow material to flow in and out of the nucleus.
- The nuclear envelope is attached to a network of cellular membranes called the endoplasmic reticulum.

- The nucleolus is
 - a prominent structure in the nucleus and
 - the site of ribosomal RNA (rRNA) synthesis.

4.6 Ribosomes make proteins for use in the cell and export

- Ribosomes are involved in the cell’s protein synthesis.
 - Ribosomes are synthesized from rRNA produced in the nucleolus.
 - Cells that must synthesize large amounts of protein have a large number of ribosomes.
4.7 Overview: Many cell organelles are connected through the endomembrane system

- Many of the membranes within a eukaryotic cell are part of the endomembrane system.
- Some of these membranes are physically connected and some are related by the transfer of membrane segments by tiny vesicles (sacs made of membrane).
- Many of these organelles work together in the
 - synthesis,
 - storage, and
 - export of molecules.

4.8 The endoplasmic reticulum is a biosynthetic factory

- There are two kinds of endoplasmic reticulum—smooth and rough.
 - Smooth ER lacks attached ribosomes.
 - Rough ER lines the outer surface of membranes.
 - Although physically interconnected, smooth and rough ER differ in structure and function.
4.8 The endoplasmic reticulum is a biosynthetic factory

Smooth ER
- Is involved in a variety of diverse metabolic processes.
 - Produces enzymes important in the synthesis of lipids, oils, phospholipids, and steroids.
 - Other enzymes help process drugs, alcohol, and other potentially harmful substances.
 - Some smooth ER helps store calcium ions.

Rough ER
- Makes additional membrane for itself and
- Makes proteins destined for secretions.

4.9 The Golgi apparatus finishes, sorts, and ships cell products

- The Golgi apparatus serves as a molecular warehouse and finishing factory for products manufactured by the ER.
 - Products travel in transport vesicles from the ER to the Golgi apparatus.
 - One side of the Golgi apparatus functions as a receiving dock for the product and the other as a shipping dock.
 - Products are modified as they go from one side of the Golgi apparatus to the other and travel in vesicles to other sites.

4.10 Lysosomes are digestive compartments within a cell

- A lysosome is a membranous sac containing digestive enzymes.
 - The enzymes and membrane are produced by the ER and transferred to the Golgi apparatus for processing.
 - The membrane serves to safely isolate these potent enzymes from the rest of the cell.

4.10 Lysosomes are digestive compartments within a cell

Lysosomes help digest food particles engulfed by a cell.
1. A food vacuole binds with a lysosome.
2. The enzymes in the lysosome digest the food.
3. The nutrients are then released into the cell.
4.10 Lysosomes are digestive compartments within a cell

- Lysosomes also help remove or recycle damaged parts of a cell.
 1. The damaged organelle is first enclosed in a membrane vesicle.
 2. Then a lysosome
 - fuses with the vesicle,
 - dismantles its contents, and
 - breaks down the damaged organelle.

4.11 Vacuoles function in the general maintenance of the cell

- Vacuoles are large vesicles that have a variety of functions.
 - Some protists have contractile vacuoles that help to eliminate water from the protist.
 - In plants, vacuoles may
 - have digestive functions,
 - contain pigments, or
 - contain poisons that protect the plant.

4.13 Mitochondria harvest chemical energy from food

- Mitochondria are organelles that carry out cellular respiration in nearly all eukaryotic cells.
- Cellular respiration converts the chemical energy in foods to chemical energy in ATP (adenosine triphosphate).

4.14 Chloroplasts convert solar energy to chemical energy

- Chloroplasts are the photosynthesizing organelles of all photosynthesizing eukaryotes.
- Photosynthesis is the conversion of light energy from the sun to the chemical energy of sugar molecules.
4.16 The cell’s internal skeleton helps organize its structure and activities

- The cytoskeleton is composed of three kinds of fibers.
 1. **Microfilaments** (actin filaments) support the cell’s shape and are involved in motility.
 2. **Intermediate filaments** reinforce cell shape and anchor organelles.
 3. **Microtubules** (made of tubulin) give the cell rigidity and act as tracks for organelle movement.

- Cells contain a network of protein fibers, called the **cytoskeleton**, which functions in structural support and motility.

- Scientists believe that motility and cellular regulation result when the cytoskeleton interacts with proteins called motor proteins.
4.17 Cilia and flagella move when microtubules bend

While some protists have flagella and cilia that are important in locomotion, some cells of multicellular organisms have them for different reasons.

- Cells that sweep mucus out of our lungs have cilia.
- Animal sperm are flagellated.

4.17 Cilia and flagella move when microtubules bend

- A flagellum, longer than cilia, propels a cell by an undulating, whiplike motion.
- Cilia work more like the oars of a crew boat.
- Although differences exist, flagella and cilia have a common structure and mechanism of movement.

4.17 Cilia and flagella move when microtubules bend

- Both flagella and cilia are made of microtubules wrapped in an extension of the plasma membrane.
- A ring of nine microtubule doublets surrounds a central pair of microtubules. This arrangement is called the 9 + 2 pattern and anchored in a basal body with nine microtubule triplets arranged in a ring.
4.17 Cilia and flagella move when microtubules bend

- Cilia and flagella move by bending motor proteins called dynein feet.
 - These feet attach to and exert a sliding force on an adjacent doublet.
 - The arms then release and reattach a little further along and repeat this time after time.
 - This “walking” causes the microtubules to bend.

4.19 The extracellular matrix of animal cells functions in support and regulation

- Animal cells synthesize and secrete an elaborate extracellular matrix (ECM) that
 - helps hold cells together in tissues and
 - protects and supports the plasma membrane.
 - Remember they discussed this in the Cell Video we watched, this is not specific to an individual
 - Skin cells can be placed on burn victims without rejection

4.20 Three types of cell junctions are found in animal tissues

- Adjacent cells communicate, interact, and adhere through specialized junctions between them.
 - Tight junctions prevent leakage of extracellular fluid across a layer of epithelial cells.
 - Anchoring junctions fasten cells together into sheets.
 - Gap junctions are channels that allow molecules to flow between cells.

4.21 Cell walls enclose and support plant cells

- A plant cell, but not an animal cell, has a rigid cell wall that
 - protects and provides skeletal support that helps keep the plant upright against gravity and
 - is primarily composed of cellulose.
- Plant cells have cell junctions called plasmodesmata that serve in communication between cells.
4.22 Review: Eukaryotic cell structures can be grouped on the basis of four basic functions

- Eukaryotic cell structures can be grouped on the basis of four functions:
 1. genetic control,
 2. manufacturing, distribution, and breakdown,
 3. energy processing, and
 4. structural support, movement, and communication between cells.